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Adaptive mesh refinement techniques are described for two-dimen- 
sional systems of parabolic partial differential equations. Solutions are 
calculated using Galerkin’s method with a piecewise bilinear basis in 
space and backward Euler integration in time. A posteriori estimates of 
the local discretization error of piecewise bilinear finite element solu- 
tions are obtained by a p-refinement technique. These error estimates 
are used to control a local h-refinement strategy where finer grids are 
recursively introduced in regions where a prescribed tolerance is 
exceeded. Fine grids at a given level of refinement may overlap each 
other and independent solutions are generated on each of them. A ver- 
sion of the Schwarz alternating principle is used to coordinate solutions 
between overlapping fine grids. Computational results demonstrating 
the performance of the adaptive procedure on linear and nonlinear 
problems and apparent convergence of the error estimate for linear heat 
conduction problem and uniform global refinement is presented. 
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strategies, including domain decomposition methods, have 
been successively applied to elliptic problems [ 13, 193, but 
have not been used widely for parabolic systems. This paper 
explores a local overlapping grid h-refinement solution 
technique with a p-refinement error estimation strategy. 

Consider the solution of a two-dimensional system of m 
parabolic partial differential equations having the form 

u, + f(x, t, u, Vu) = V’[D(x, t, u) Vu], 

XEl2, t>o, (l.la) 

with initial and boundary conditions 

u = uO(x), xmuasz, t>o, (l.lb) 

and, respectively, 
1. INTRODUCTION 

A variety of strategies have been developed for the adap- 
tive solution of parabolic partial differential equations. 
Techniques include the method of lines (MOL) with 
spatial mesh (h-refinement) [ 1,2,8,9], mesh motion 
(r-refinement) [6, 12, 14, 16, 24, 261, combinations of the 
two [3,4], and spatial order enrichment (p-refinement) 
[18]. Local refinement methods (LRM), where problems 
are solved on local space-time meshes, have been developed 
using h-refinement [21, 223. A number of overlapping grid 
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u=gE, x E ar;;zE, 
Du, = gN, xEa1;2N, 00, 

(l.lc) 

on the rectangular region Q = { (x, y) 1 a < x < b, c < y < d }. 
Essential (Dirichlet) or natural (Neumann) boundary con- 
ditions are prescribed on portions of the boundary XJnE or 
a&IN, respectively. Subscripts x, y, r denote partial differen- 
tiation and v denotes the unit outer normal to the boundary 
asz=as;z5aszN, 0fa. 

Adaptive methods for partial differential equations are 
feedback systems that typically proceed by calculating a 
preliminary solution on a coarse discretization of Sz. 
“Refinement indicators” are used to identify portions of the 
domain in need of additional resolution. One or more of the 
three enrichment strategies are used to alter discretization 
and calculate an improved solution. As noted, most 
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adaptive strategies for parabolic problems have relied on 
h- and/or r-refinement. 

Our procedure for solving (1.1) involves the use of 
piecewise bilinear finite element approximations and back- 
ward Euler integration in time (cf. Section 3). Refinement 
indicators are based on estimates of the local error obtained 
by p-refinement using piecewise second-order serendipity 
polynomials in space and the trapezoidal rule in time. 
Superconvergence properties of the finite element method 
reduce the computational overhead associated with this 
method. The resulting nonlinear systems for the solution 
and refinement indicators are solved using Newton’s 
method with either a preconditioned conjugate gradient 
method or the incomplete orthogonalization method. 

The adaptive LRM, described in Section 2, consists of 
initially solving ( 1.1) on a uniform base grid for one time 
step. An element-wise error indicator is used to identify 
those elements having “high error” and group them into 
rectangular regions called megagrids. As shown in Fig. 1, 
overlapping line uniform grids are generated within each 
megagrid and (1.1) is solved again on these grids. This 
refinement process is repeated until a prescribed local error 
tolerance is satisfied. A tree is a natural data structure to 
manage the information associated with all of the grids. 
Nodes of the tree represent data at the megagrid level, with 
liner megagrids regarded as offspring of coarser ones. 
Information associated with overlapping line grids within 
each megagrid is stored as records at the nodes of the tree. 

A finite element problem is formulated and solved on 
each grid within a megagrid. This necessitates the prescrip- 
tion of appropriate initial and boundary conditions on each 

FIG. 1. Base spatial background grid with two offspring megagrids 
(marked with bold lines) and their local rectangles. High error elements of 
the base mesh are indicated by x ‘s. 

space-time grid. Since our temporal integration is implicit, 
prescribing boundary conditions is particularly complex in 
regions where meshes overlap. An iterative procedure, 
analogous to Schwarz alternation (cf. Dihn et al. [13]), is 
used to successively calculate solutions on fine grids within 
each megagrid. 

Three computational examples are presented in Section 4. 
A linear example indicates that the a posteriori error 
estimate, used to control the refinement process, converges 
in energy to the exact local error. Convergence of a similar 
error estimate has been proven for one-dimensional 
problems [21]. Other examples demonstrate the effective- 
ness of our method on realistic nonlinear problems. 

2. LOCAL REFINEMENT STRATEGY 

The LRM finite element procedure for solving (1.1) is 
most conveniently described at the megagrid level. Thus, let 
R(o, p, q, F, S, L) denote an arbitrary space-time hexa- 
hedral megagrid, where o := {(x, y) 1 c( < x < 8, y < y < S} 
is the spatial domain; p and q are times at the beginning and 
end of the time step, respectively; F and S point to parent 
and offspring megagrids of R, respectively; and L is a record 
of information associated with line grids contained within 
R. For each base time step [ tk, tk+ 1], k = 1, 2, . . . . initial 
solutions are obtained on a base megagrid R(Q, tk, tk + , , 
0, S, L) which contains one local grid L occupying the 
whole of Q. Spacing of the base megagrid is prescribed and 
is the coarsest spacing permitted by the LRM procedure. 

A top level description of a recursive LRM algorithm for 
solving (1.1) on R(o, p, q, F, S, L) is presented in Fig. 2 
using a pseudo-PASCAL language. A solution and error 
indicators are generated on R using procedure solve 
(cf. Fig. 4). Refinement indicators are used to isolate those 
elements having local errors that exceed a prescribed 
tolerance and group them into other rectangular megagrids 
which are regarded as the offspring of R in a tree structure. 

procedure lrm (R, ml); 
begin 

solve (R(wp,qP,SC)); 
if any error indicator > to1 then 

begin 
Form offspring megagrids; 
for j := 1 to number of offspring do 

begin 
Create local rectangular grids; 
Calculate the temporal refinement factor tref VI; 
for i := 1 to trefb] do 

begin 
p[i] := p+(i-l)*(q-p)/trefG]; 
q[i] := p[i] +(q-p)itrefli]; 
h ~R~wti1,~~~l,q~~lP~~,~,q,~,~~L,~Ul~LVI~,~~~~ 

end 
end 

end 
end { lrm }; 

FIG. 2. Recursive local refinement algorithm for the solution of (1.1) 
on megagrid R(o, p. q, F, S, L) to an error tolerance to/. 
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Pointers F and S simplify traversal of the tree and are used 
to pass information between megagrids. Sibling megagrids 
are isolated from each other and have edges that are parallel 
to the global coordinate axes (cf. Fig. 1). Overlapping fine 
uniform local grids are created within each megagrid, tem- 
poral refinement factors are selected, and finite element 
solutions are generated on each local grid. The recursive 
procedure continues to generate megagrids having finer 
structures until either the prescribed tolerance is satisfied 
or resource limitations are exceeded. In order to solve 
(1.1 ), procedure lrm is invoked on the base grids 
NQ, tk, fk+l, 0, S, L), k = 0, 1, . . . . 

Megagrids are constructed using the nearest neighbor 
clustering algorithm. For each megagrid, a second IocaZ 
rectangle containing the clustered high-error elements is 
created by envoking Berger and Oliger’s [7] procedure. 
This local rectangle may possibly be skewed with respect to 
the coordinate axes. If the rectangle intersects the parent 
megagrid boundaries, it is replaced by a rectangle whose 
sides are parallel to the domain boundaries (and hence the 
megagrid boundaries). If the rectangle contains too few 
high-error elements it is bisected along its major axis, parti- 
tioning the elements into two sets (cf. Fig. 3). Two new local 
rectangles are created, one for each set. If they are each more 
efficient than the first rectangle they replace it, otherwise the 
initial larger rectangle is used. When two local rectangles 
are produced the bisection algorithm is applied to both of 
them, with the exception that any new local rectangles 
created by splitting are aligned with the domain boundaries. 
Thus, a maximum of four rectangles are created for each 
megagrid. 

Uniform grids, enlarged on each edge by a l-element 
buffer, are placed on each local rectangle to form a local 
grid. Local grids within a megagrid can overlap each other, 
but sibling megagrids are independent. The independence of 
megagrids at the same tree level further allows us to use dif- 
ferent spatial and temporal refinement factors on different 
megagrids. This strategy reduces communication, which 
simplifies the computation of initial conditions on offspring 
megagrids, and should improve performance on parallel 
computers. 

FIG. 3. A larger (thin-lined) rectangle containing too small a percent- 
age of high-error elements (identified by x s) is bisected along its major 
axis creating two smaller local rectangles (thick-lined) having a higher 
percentage of high-error elements. 

Initial and boundary conditions are needed by the finite 
element solution procedure solve (cf. Fig. 4) for each local 
grid Ti within R. An initial guess for the boundary condi- 
tions on 8Tj is obtained by using either the prescribed data 
on &2 or by creating Dirichlet conditions using interpola- 
tion in time from a parent megagrid. This prescription is not 
appropriate in regions where local grids overlap; and 
instead, we use Schwarz alternation commonly used for 
elliptic problems [ 131. Thus, a solution obtained on one 
local grid is used to update boundary data on all other 
intersecting local grids. This strategy is repeated on each 
local grid in turn until satisfactory accuracy is attained. 
Generally, three Schwarz iterations have been found to 
produce satisfactory convergence to the piecewise bilinear 
finite element solution. Oliger et al. [23] have provided a 
convergence analysis and acceleration methods for the 
Schwarz alternation for elliptic problems. Lions [20] 
proved the convergence of the Schwarz iteration in L2 for 
linear parabolic problems, and our experimental indications 
imply robust convergence for nonlinear problems. 

In order to prevent a loss of resolution, initial conditions 
on local grid Ti at t = p+ are calculated from the finest scale 
information available t = p -. The searching process is 
greatly simplified by the use of megagrids which limit the 
search to local grids within those megagrids that intersect R 
at t = pp. The first step of the search consists of creating a 
list of those megagrids at t = p ~ which overlap R. This list 
of megagrids is traversed to find those local grids that inter- 
sect Tj. These grids are ordered by level into a set of lists. 
Finally, initial data for each element of T, is obtained by 
piecewise bilinear interpolation using data from those 
elements in the set of lists at the highest available levels (i.e., 
from the finest grids at t = p-). Search efficiency is 
improved by moving the grid in which the element is found 
to the head of its list, thus taking advantage of the convexity 
of grids and locality. Similar procedures are also used in 
finding internal boundary data. 

The megagrid data structure greatly simplifies restarting 
the integration at any base time step and production of data 

procedure solve (R ); 
begin 

for i := 1 to number of local grids do 
begin 

Compute initial conditions for local grid T, ; 
Compute boundary conditions for Ti 

end 
repeat 

for i := 1 to number of local grids do 
begin 

Solve the finite element problem (3.4) for (1.1) on Ti ; 
Update appropriate boundary conditions 

end 
until Schwarz iteration converges; 
for i = 1 to number of local grids do Compute error on ri 

end { solve }; 

FIG. 4. Solution algorithm on megagrid R(w, p. q, F, S, 12). 
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for graphical display. Interpolation inherent in the finite ele- one-dimensional polynomials with respect to A.. Specifi- 
ment solution can be used to generate data for any uniform tally we determine U E S f;: on p < t < q by 
grid which can be used either for graphics or for generating 
a different base mesh. w, U,) + (V, f) + w, U) 

(V, DU, >, for all V E S>:. (3.3) 
3. DISCRETIZATION AND ERROR 

ESTIMATION As noted, initial conditions are obtained by interpolation 
using either the initial data at p = 0 or the best available 

The adaptive LRM described in Section 2 introduces solution at t = pp > 0. 
uniform overlapping rectangular grids having various The system of ordinary differential equations (3.3) is 
orientations; however, we describe the finite element proce- discretized in time using the backward Euler method which 
dure for the time step [p, q] on a uniform local grid A, that yields an approximation U4 of U(X, 4) as 
is aligned with the global (x, y) coordinate axes, i.e., on 

(V, Uy- Up) + At[(V, f(W)) + A(V, U4)] 

T= {bw)lt<x<rl,~<y<+ (3.1) = At( I’, DUT), for all V E S&, (3.4) 

Rotated rectangular grids are obtained using well-known where At=q-p. 

coordinate transformations. The strategy employed to obtain error estimates for the 

The Galerkin form of (1.1) consists of determining piecewise bilinear solution U4(x) uses continuous spaces 
S $f of piecewise second-order serendipity functions. 

where 

(v, 4) + (VT f) + A(v, u) 

= (v, Du, >, for all v E HA, 

Consider a second solution UYQ(X)E Siz of (3.3) using 
trapezoidal rule integration in time. This solution is higher 
order in both space and time than U4(x) and the difference 

and 

(v,u)=jTvTUdIxl, 

A(v, u)=j Vv=DVudlxl 
T 

(3.2a) U4 - Ub furnishes an estimate of the discretizon error of Uy. 
The computational efficiency of this procedure can be 
improved by using the nodal superconvergence property of 
finite element methods for parabolic problems [ 11. Nodal 
superconvergence implies that spatial convergence of finite 

(3.2b) element solutions is of higher order at nodes than it is 
globally. This further implies that U; can be approximated 

(3.2~) as 

(v, u) =s,,vTu ds. 

U;(x) z U;(x) =@(x) + E’(x), (3.5a) 

where U9(x) is the piecewise bilinear solution of (3.3) 
obtained using trapezoidal rule integration, i.e., 

(3.2d) 
(V, Uq) + l/2 At [(V, f(Uq)) + A(V, U4)] 

The symbol d 1 x 1 denotes an area element and H ’ denotes 
the usual Sobolev space, with the subscript E restricting 
functions to satisfy any imposed Dirichlet conditions on aT 
and the subscript 0 restricting functions to satisfy trivial 
versions of any applied Dirichlet conditions on aT. Initial 
conditions at p = 0 are obtained by, e.g., strain energy 
projection 

A(v, u( .) 0)) = A(v, u”). (3.2e) 

Finite element solutions U(x, t) of (3.2) are obtained by 
introducing a uniform grid A, of rectangular elements on T 
and approximating H1 by a finite dimensional subspace 
Sf;: consisting of a tensor product of kth degree piecewise 

= (V, Up) - l/2 At [(V, fP) + A(V, Up)], 

for all V E Si,. (3.5b) 

The piecewise second-order serendipity function Eq(x) E 
Sf;f that vanishes at the vertices of T satisfies 

(v, oq+ Eq) + l/2 At [(V, f(Uq + EY)) + A(V, UJ4+ Eq)] 

= (V, fJP + EP) - l/2 At [(V, f(UP + EP)) 

+ A(V, Up + EP)], forall Vest;:. (3.k) 

The discretization error is approximated as Uy - 
fTq- E4. Separate estimates of the spatial and temporal 
discretization error can be obtained as Eq and Uq - Uy, 
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respectively. Such estimates are useful when assigning 
different refinement strategies to different megagrids. In our 

procedure, all error estimates are computed subsequent 
to convergence of the Schwarz iteration. A refinement 
indicator for each element is obtained from the local value 
of Uy - U74 - EY in a local H1 norm. 

The nonlinear ordinary differential systems (3.4), (3.5) 
are solved by Newton’s method. The Jacobians of (3.4) and 
(3.5b) only differ by a factor of l/2 dt; thus, separate assem- 
blies can easily be avoided. In a prior effort [22], we used 
the Jacobian of (3.4) for both the solution of (3.4) and 
(3Sb). The present alternative requires the same effort to 
assemble the systems, but provides improved convergence 
for the solution of (3.5b). Poor initial guesses for U4 can 
cause divergence of the Newton iteration. Divergence is 
detected using a criterion suggested by Ascher et al. [S], 
whereupon the time step is halved and the Newton iteration 
retried. When a Newton iteration fails on a base time step, 
the base time step is halved until the temporal error estimate 
is small enough to enlarge it again. 

Resulting linear algebraic systems are solved using either 
a preconditioned conjugate gradient iteration or a pre- 
conditioned incomplete orthogonalization method (IOM) 
[25]. Iterative methods are becoming increasingly popular 
for the solution of linear systems arising from stiff ordinary 
differential systems [ 111. The IOM, which is an approxima- 
tion of the full orthogonalization method, has been shown 
to work well for asymmetric systems. Briefly, the full 
orthogonalization method for the solution of the n x II linear 
system 

Ax=b 

constructs an orthonormal basis 

(3.6a) 

W” = cw,, w2, . ..> w,l 

for the Krylov subspace 

(3.6b) 

K,, = span{r, Ar, . . . . A”- ‘r}, 

where the residual 

(3.6~) 

r=b-Ax,, (3.6d) 

with x0 being an initial guess. The IOM(R) method requires 
that Avj only be orthogonal to the previous k vectors, i.e., 
vj-k+l, ...) vj. The preconditioner for both the conjugate 
gradient and the IOM(k) methods is the incomplete 
Cholesky factorization of 1/2(A + AT); hence, sparsity is 
preserved and the preconditioner can be used even in the 
case that A is nonsymmetric. The same preconditioner is 
used in calculating both Uq and U4. The adaptive LRM 
algorithm automaticallv selects either the coniueate 

gradient or IOM(k) method. Preconditioned conjugate 
gradient iteration is used only if A is symmetric and the 
incomplete Cholesky factorization is successful. IOM(2) 
with Gram-Schmidt orthogonalization is used if A is 
not symmetric and incomplete Cholesky factorization 
succeeds; otherwise, IOM(4) with orthogonalization using 
Householder transformations [27] is used. 

4. EXPERIMENTAL RESULTS 

Computational results of three examples are used to 
demonstrate the performance of the adaptive local retine- 
ment procedure, quantify some of its advantages relative to 
fixed-mesh calculations, and provide some evidence that 
our techniques can be used to solve practical problems aris- 
ing in engineering. Calculations were performed in double 
precision arithmetic on either SUN 3 or SUN 4 worksta- 
tions or an IBM 30908/200 computer at the Rensselaer 
Polytechnic Institute and Tulane University. A one-element 
buffer (A = 1) was added to each local grid. 

EXAMPLE 1. Consider the linear heat conduction equa- 
tion 

u, +f(x, y, t) = Au, 0 < x, y < 1, t > 0. (4.1) 

The Dirichlet boundary conditions, source f(x, y, t), and 
initial conditions are selected so that the exact solution of 
(4.1) is 

u(x, y, t) = 0.8e - 8OC(x ~ r(t))*+ (Y -s(r)?1 (4.2a) 

where 

r(t) = 0.5 + 0.25 sin nt, s(t) = 0.5 + 0.25 cos nt. (4.2b) 

This solution is a “cone” initially centered at (0.5,0.75) that 
rotates clockwise in a circle centered at (0.5,0.5). 

In order to demonstrate the accuracy of our local error 
estimate, we solved (4.1) on uniform grids for one time step 
with Ax = Ay = At = 0.2, 0.1, 0.05, and 0.025. The effectivity 
index is a common measure of the accuracy of an error 
estimate. Herein, we define it as the ratio of the local error 
estimate to the local error in the H’ norm, i.e., 

8,= /IUA’- OAr-EAtlll,j 
’ IIUAr-~(., .~At)ll~,j’ 

(4.3a) 

where 

u; + u; + u’) dx dy, (4.3b) 

AT being an element of the local erid A, (cf. Section 3). 
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TABLE I 

Maximum Local Error and Effectivity Index IO,1 m as Function 
of the Uniform Mesh Spacing Ax = Ay = At for Example 1 

Al IIU”--u(., .> A~)ll~,, P,l, A.5 

0.2 0.591 0.448 

0.1 0.356 0.814 

0.05 0.116 0.921 

0.025 0.032 0.911 

Also, let jOjiI=maxij,,,..,j lo,\. In TableI, we present 
the maximum local error and lo,1 m for each At. 

The results indicate that the local error is approaching a 
quadratic rate as predicted by theory. The effectivity index 
is approaching unity at faster than a linear rate, indicating 
that the error estimate is converging to the exact local error 
in H ‘. Furthermore, the error estimate is more than 80 % of 
the exact local error for all but the largest mesh spacing, 
which implies that it is a robust measure of the local error. 

Adaptive solutions of (4.1) were obtained on 0 6 t 6 1 
using a 10 x 10 base grid, a time step of 0.1, and local HI 
error tolerances of 0.1,0.05, and 0.025. Results for the global 
errors at t = 0.5, 1 and the total number of space-time 
elements to integrate from t = 0 to 0.5 and 1 are presented 
as functions of the local error tolerance in Table II. As the 
tolerance is halved, the exact error at t = 0.5 and 1 decreases. 
This indicates that controlling the local error allows us, in 
some sense, to control the global error as well. Local grids 
at t = 0.3, 0.5, 0.8, and 1.0 are presented in Fig. 5 for 
solutions obtained with a tolerance of 0.05. 

For comparison, a solution computed on a uniform 
40 x 40 grid with a time step of 0.025 had an error of 0.158 
and used 32,000 space-time elements to integrate to t = 0.5, 
and had an error of 0.158 and used 64,000 space-time 
elements to integrate to 1.0. Assuming that the number of 
space-time elements is a reasonable measure of computa- 
tional complexity, the adaptive LRM solution with a 
tolerance of 0.05 required 70% fewer elements to integrate 
to t = 0.5, and 69 % fewer elements to integrate to 1.0 for 
approximately the same global accuracy. 

0 0 
0 .5 1.0 0 5 1.0 

x x 

FIG. 5. Local grids generated in solving Example 1 by the LRM at 
f = 0.3 (upper left), t = 0.5 (upper right), t = 0.8 (lower left), and t = 1 .O 
(lower right) with a tolerance tol= 0.05, a 10 x 10 base spatial mesh, and 
a base time step of 0.1. 

Identical errors at t = 0.5 and 1.0 indicate that the conical 
solution has retained its shape while rotating and that the 
local meshes are accurately tracking its position. 

EXAMPLE 2. Consider the combustion problem 

u,=Au-DuepSIT, (4.4a) 

LT,= AT+ ctDuephJT, O<x,y< 1, t>O, (4.4b) 

4x3 Y, 0) = T(x, Y, 0) = 1, O<x,ydl, (4.4c) 

~0, Y, t) = TAO, Y, t) = 0, 

41,~~ t)= T(Ly, t)= 1, O<y<l,t>O, 
(4.4d) 

u,(x, 0, t) = TJx, 0, t) = 0, 

u(x, 1, t) = T(x, 1, t) = 1, O<X<l,f>O. 
(4.4e) 

TABLE II 

Global Error at t = 0.5, 1.0 and the Total Number of Space- 
Time Elements N to Integrate from t =0 to 0.5 and 1.0 as 
Functions of the Local Error Tolerance tel. 

t=o.5 t= 1.0 

Tof ~~Uos-u(~;,0.5)~~, N IIL’l-o-u(., ., l.O)lf, N 

0.1 0.224 3840 0.224 7140 

0.05 0.149 9556 0.149 19,768 

0.025 0.119 19,714 0.119 40,204 

The variables u and T denote the concentration and tem- 
perature of a chemical that is undergoing a one-step reac- 
tion in a domain - 1 <x, y < 1. Symmetry considerations 
permit solving the problem in one quadrant of this domain. 
A one-dimensional version of this problem was investigated 
by Kapila [ 171. The parameter L is the Lewis number, 6 is 
the activation energy, a is the heat release, and 

D = Res/&. (4.4f) 

is the Damkohler number with R being the reaction rate. 

0 
0 .5 1.0 
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The temperature and concentration are related by T + au = 
1 + a when L = 1 and, thus, (4.4) can be reduced to a scalar 
problem. This case has been studied by both analytical and 
numerical methods [ 17, 2, 211. Its solution features a tem- 
perature that initially increases slowly from unity forming a 
“hot spot” at the origin. An ignition occurs at a finite time 
and the temperature at (0,O) jumps from near unity to 
approximately 1 + a. A sharp reaction front subsequently 
forms and propagates rapidly towards the boundaries x = 1 
and y = 1 where a boundary layer develops. Problems where 
L differs slightly from unity are expected to have a similar 
behavior. 

We solved (4.4) with L=O.9, 6 =20, a = 1, and R= 5 
using a local H’ error tolerance of 0.05 on a 20 x 20 base 
mesh having a time step of 0.05. Surface renditions of the 
concentration and temperature are shown in Fig. 6 as func- 
tions of position at times t = 0.225, 0.2375, and 0.25, which 
correspond to times while the front is rapidly crossing the 
domain. The meshes at the three times are shown in Fig. 7. 
The results presented in Fig. 6 and 7 demonstrate that the 

FIG. 6. Concentrations (left) and meshes (right) at f = 0.225, 0.2375, 
and 0.25 (top to bottom) for E origins for concentrations and temperatures 
are at the front and respectively. 

LRM can be used to solve complex nonlinear problems 
having strong dynamic structures without having a detailed 
knowledge of the solution behavior, without needing to 
tune numerical parameters and with no user intervention. 
Although the grids pictured in Fig. 7 do not overlap, the 
grids did overlap at other times during execution, thereby 
requiring the use of the Schwarz alternating method as 
outlined in Section 2. 

EXAMPLE 3. Consider the dimensionless Fokker- 
Planck equation 

P,= -vP,+PP+[Bs+~]p”+~p”“, (4.5a) 

for the probability density function P(x, v, t) corresponding 
to a particle of mass m moving in a bistable potential, 
U(X) md, coupled with a heat bath [lo]. Cartling [lo] 
considers the double-well potential 

1/2(x + 2)2, x< -1, 
U(x) = 1 - 1/2x*, -l<x<l, (4.5b) 

1/2(x - 2)*, x> 1, 

formed by joining three harmonic functions where o is the 
angular frequency of deterministic oscillations in either well, 
/IO is the damping constant describing the strength of 
coupling to the heat bath, K is the Boltzmann constant, and 

x 

FIG. 7. Sequence of overlapping meshes at t = 0.225 (upper left), 
0.2375 (upper right), and 0.25 (lower center) for Example 2. 
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FIG. 8. Surface rendition of P(x, v, t) at t = 4 (upper left), 10 (upper right), 20 (lower left), and 100 (lower right) for Example 3. 
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T is the absolute temperature. Following Cartling we take 
the initial state to be 

,, ~ 1/2(moQcT)[(x + 2p + v2] 
P(x, v, 0) = = 

2rcK-TJmco2 
(4.k) 

which is the Maxwell-Boltzmann distribution correspond- 

FIG. 9. Dithered renditions of center contour plots of P(x, v, t) at 
t = 4 (upper left), 10 (upper right), 20 (lower left), and 100 (lower right) for 
Example 3. 

ing to the equilibrium state where only the left harmonic 
part of the potential (4Sb) is present. The numerical 
domain is chosen so that homogeneous Dirichlet boundary 
conditions may be applied at the domain boundaries. For 
(4.5a)-(4.5c) we solve on - 5 < x d 5, - 3 < v < 3. 

We present results for p = 0.4 which represents moderate 
damping, and mw2/tcT= 4 which corresponds to the maxi- 
mal reaction rate. We solved (4.5a)-(4.5c) with the 
parameter values listed above on a 20 x 12 base mesh having 
a time step 0.5 and a local H’ error tolerance of 0.005. 
Surface renditions and dithered renditions of color contour 
plots of our finite element solution at t = 4, 10, 20, and 100 
are shown in Figs. 8 and 9, respectively. Corresponding 
meshes are shown in Fig. 10. Probability densities greater 
than 0.1 are not shown in order to emphasize the fine-scale 
structure that is present in the solution. 

Our results are qualitatively the same as those of [lo] 

TABLE III 

The Number of Space-Time Elements, NAD, and N,,,, for 
the Method of Cartling [lo] and the LRM, respectively, at 
t = 4, 10,20, loo 

t NAo, x 10m6 N LRM x 1o-6 

4.0 48 0.21 
10.0 120 0.53 
20.0 240 1.0 

100.0 480 5.5 

581/98/l-5 
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FIG. 10. Sequence of overlapping meshes at t =4 (upper left), 10 
(upper right), 20 (lower left), and 100 (lower right) for Example 3. 

for t = 4, 10, and 20. However, by t = 100 the probability 
density over the second well (x = 2, v = 0) is significantly 
larger in our results. Cartling computed the solution of 
(4.5a)-(4.5c) using central differencing in space and the 
trapezoidal rule in time. The resulting implicit system is 
solved using an AD1 method. For this case, a mesh spacing 
of 0.02 in x and v and time steps of 0.025 and 0.1 were used 
for 0 < t < 20 and t > 20, respectively. The smallest time 
(and space) step used in obtaining our solution was 0.03 125. 
This time step was needed throughout the calculation on the 
finest spatial grid. 

A comparison of the number of space-time elements used 
in calculating the solution at times t = 4, 10, 20, and 100 by 
the finite difference AD1 method of Cartling [lo] and 
the LRM is shown in Table III. The adaptive LRM uses 
significantly fewer elements than the AD1 method in 
obtaining the same solution. 

The Fokker-Planck equation is not strictly of the form 
(1.1) because no P,, term is present in (4.5a). Nevertheless, 
the refinement indicator has produced finer meshes in the 
correct areas of the problem domain. The local discretiza- 
tion error-based refinement indicator may not, however, be 
providing an accurate estimate of the error in this problem. 
Grid overlap was observed at times other than those of 
Fig. 10 during the execution of the problem. 

5. DISCUSSION 

We have developed an adaptive local refinement proce- 
dure for parabolic systems in two space dimensions. This 

differs from the more typical method-of-lines approach 
which requires the solution of problem over the entire 
domain for each time step. Thus different time steps can be 
used in different regions of the domain which was observed 
in Example 3. A tree data structure of megagrids is used to 
manage a nest of local overlapping grids. An implicit finite- 
element solution strategy using piecewise bilinear elements 
in space and the backward Euler method in time is for- 
mulated. We obtain an estimate of the local discretization 
error of the solution using a p-refinement approach with 
piecewise serendipity approximations in space and 
trapezoidal rule integration in time. A version of the 
Schwarz alternating principle is used to coordinate solu- 
tions between overlapping grids because of the local nature 
of the solution procedure. 

The computational examples of Section 4 indicate that 
the error estimate converges for linear problems. Exam- 
ples 2 and 3 demonstrate that the LRM can be used to solve 
some difficult nonlinear problems. Example 3 also shows 
the advantages that can be gained from using adaptive 
methods rather than fixed grids. Iterative methods have 
proved effective in solving the linear systems resulting from 
the modified Newton method even for nonsymmetric 
Jacobians. 

Although three Schwarz iterations were used to obtain 
convergence, the results in Lions [20] indicate that only 
one may be necessary. Preliminary results using one itera- 
tion have been promising. This modification significantly 
reduces the amount of work since Jacobians need be assem- 
bled only once. Problems on non-rectangular domains can 
presumably be handled by combining our LRM with a com- 
posite grid mesh generating scheme of, e.g., Henshaw [ 151. 
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